مشاهدة النسخة كاملة : للفائقين


محمد الباجس
22-02-2010, 05:55 AM
إذا كانت س = 3 أحد جذرى المعادلة س^2 +ب س - 5 = 0 فأوجد قيمة ب والجذر الأخر
إذا كان -1 , 3 جذرا المعادلة س^2 -ب س +حـ = 0 فما قيمة ب,جـ

H 0 s s A M
22-02-2010, 09:33 AM
السؤال الاول ::

ب = -4/3

والجذر الثانى = -5/3

السؤال الثانى ::

ب = 2

جـ = -3

محمد الباجس
25-02-2010, 05:44 PM
http://dc05.arabsh.com/i/01191/hbi0rvxgj692.gif
علما بأن
أ ء = ء ب

محمد الباجس
26-02-2010, 05:51 AM
كون المعادلة التى جذراها أ/ب , -أ/ب
إذاكان ل, م جذرا المعادلة س^2 + 5س +3 =0 أوالمعادلة التى جذراها 3ل , 3م
إذاكان ل, م جذرا المعادلة س^2 -3 س-2 =0 أوالمعادلة التى جذراها 3 /ل , 3/م
كون المعادلة التربيعية التى ينقص كل من جذريها عن أحد جذرى المعادلة
3س^2 -6س-1=0 بمقدار 2

محمد الباجس
26-02-2010, 05:59 AM
أثبت صحة المتطابقة
حا^2س ( 1+ 2طتا^2س ) + حتا^2س ( 1+2طا^2س)=3

محمد الباجس
26-02-2010, 06:06 AM
إذا كان طاأ + طتاأ =4 أوجد القيمة العددية
طا^3أ +طتا^3أ

hassan ali mohamed
26-02-2010, 08:13 AM
مسائلة جميلة جزاك الله خيرا

hassan ali mohamed
26-02-2010, 08:51 AM
فكرة الحل نربع الطرفين من المعطى فيكون طا^2 أ +طتا^2 أ= 14 ونحلل المطلوب مجموع مكعبين فينتج الحل
مسائلة جميلة بارك الله فيك

غاوية رياضيات
26-02-2010, 01:58 PM
لااعتقد ان الحل بالطريقة دي صحيح .ممكن يا استاذ محمد تكتب لنا الحل؟

hassan ali mohamed
26-02-2010, 02:13 PM
(طاأ +طتاأ)^2=طا^2 أ+2طاأ طتاأ +طتا^2 أ وحيث طاأ طتاأ =1 اذن طا^2أ +طتا^2 أ+2 =16 فيكون طا^2 ا+طتا^2 أ=14
اذن طا^3 +طتا^3 أ=(طاأ+طتاأ) (طا^2أ-طاأ طتاأ +طتا^2 أ ) اذن المقدار=4 (14-1 ) اى=52

البرهان الرياضى
26-02-2010, 07:11 PM
http://img31.imageshack.us/img31/3623/15581481.png

hassan ali mohamed
26-02-2010, 07:21 PM
يوجد حل مختصر بوضع طاس=جاس/جتاس ,طتاس= جتاس/جاس وبالتعويض يكون اسهل

محمد الباجس
27-02-2010, 06:38 AM
بارك الله فيكما وفى اعمالكما

محمد الباجس
27-02-2010, 06:40 AM
الحل الاخير سليم
وجزاك الله خيرا

محمد الباجس
27-02-2010, 06:44 AM
أثبت صحة المتطابقة الأتية
(1-(حاأ +حتاأ)^2 ) /(حاأ حتاأ - طتا أ ) = 2طا^2أ

محمد الباجس
27-02-2010, 06:48 AM
أوجد قيمة أ التى تجعل س=2 أحد جذرى المعادلة س^2 -2أس +2(أ^2-6)=0

محمد الباجس
27-02-2010, 06:52 AM
-2 , 3 هما جذرا المعادلة س^2-(2أ+ب)س+3أ+2ب=0
أوجد قيمة أ, ب بطريقتين

امير من مصر
27-02-2010, 10:48 AM
الاولى نعوض بجذرى المعادله فى الاصليه
ينتج معادلتين نحلهم مع بعض ينتج أ ب


الثانيه
(س+2)(س-3)=0
نفك القوس ونعمل عمليه مناظره بين المعادله الاصليه والناتج ينتج معادلتين نحلهم مع بعض
حيث ان معامل السين تربيع = معادل السين فى المعدله الاصليه

امير من مصر
27-02-2010, 10:49 AM
سورى مش كتبت الخطوات بالتفاصيل بس انا حلته وهى ديه الفكره بتاعه المسائل ام الحل التقليدى الممل او الحل بالمناظره

محمد الباجس
27-02-2010, 08:58 PM
ممتاز وطرق هى المطلوبة بارك الله فيك

امير من مصر
27-02-2010, 09:11 PM
متشكر جدا يا استاذ

امير من مصر
27-02-2010, 09:24 PM
احنا هنعوض ب2 عن ال س
وبعدين
هتنتج معادله
هى
أ^2-2أ-1=0
وبعدين هنحلها بالقانون
هيدينا الالف ب
1+-جذر 2

hassan ali mohamed
28-02-2010, 04:12 PM
مفتاح الحل :(جاأ+جتاأ)^2 يساوىبعدالفك 1+2جاأجتاأ ,طتاأ=جتاأ/جاأ ,1-جا^2أ=جتا^2أ ,طاأ=جاأ/جتاأ

مستر صديق
28-02-2010, 06:11 PM
في المثلث ا ب ج اذا كان جاتربيع ب +جتا تربيع ج =1 حدد نوع المثلث

محمد الباجس
01-03-2010, 03:32 AM
أثبت أنه لجميع قيم أ الحقيقية عدا الصفر لايكون للمعادلة
(أ^2 +1) س^2-2 أ^3 س +أ^4=0جذور حقيقية

محمد الباجس
01-03-2010, 03:36 AM
إذا كان أ ,ب عدديين نسبيين فأثبت أن جذرى المعادلة الاتية نسبيان
س^2 -2أ^3س +أ^6 -ب^6 =0

محمد الباجس
01-03-2010, 03:37 AM
أين المشاركات

محمد الباجس
01-03-2010, 03:44 AM
السلام عليكم
تعليق بسيط أثناء التعويض عن س=2 فى المعادلة
تصبح ( أ^2 -2 أ - 4 =0 )
اذا قيم أ = 1 موجب وسالب جذر5

محمد الباجس
01-03-2010, 04:56 AM
http://dc10.arabsh.com/i/01211/t2quo9q67zv2.gif

haytham_982003
01-03-2010, 03:25 PM
حل ابسط من الاثنين

الطرف الايمن = sin2 a (1+ cot2 a + cot2 a) +
cos2 a (1 + tan2 a + tan2 a)

= sin2 a (cosec2 a + cot2 a) +
cos2 a (sec2 a + tan2 a)

= 1 + cos2 a + 1 + sin2 a
= 3

محمد الباجس
02-03-2010, 05:45 AM
http://dc11.arabsh.com/i/01216/tf25pcps4g9q.JPG

محمد الباجس
03-03-2010, 05:09 AM
اين الردود

محمد الباجس
03-03-2010, 05:14 AM
إذا كانت س تنتمى [ 0 , 2ط[
فأوجد مجموعة حل المعادلة
جتا (90-س) = جذر3حا(90 - س )

رودينا1
03-03-2010, 07:17 AM
جتا(90-س)=جذر3 جا(90-س)

جاس =جذر3جتاس

ظاس=جذر3

"موجبة"

س تقع فى الربع الاول او الثالث

س=60

س=60 او س=240

محمد صبره
03-03-2010, 12:29 PM
(طاأ +طتاأ)^2=طا^2 أ+2طاأ طتاأ +طتا^2 أ وحيث طاأ طتاأ =1 اذن طا^2أ +طتا^2 أ+2 =16 فيكون طا^2 ا+طتا^2 أ=14
اذن طا^3 +طتا^3 أ=(طاأ+طتاأ) (طا^2أ-طاأ طتاأ +طتا^2 أ ) اذن المقدار=4 (14-1 ) اى=52

شكرا مستر حسن

hassan ali mohamed
03-03-2010, 07:20 PM
فكرة الحل نوجد المميز فاذا كان اقل من الصفر اى سالب فانه لا يكون للمعادلة جذور حقيقية

hassan ali mohamed
03-03-2010, 07:23 PM
بارك الله فيك مسائلة مباشرة توضح هذه العلاقة

محمد الباجس
03-03-2010, 08:47 PM
اللهم وفق الى ماتحب وترضى

محمد الباجس
05-03-2010, 07:10 AM
http://dc10.arabsh.com/i/01234/wxqk5u3v7aii.gif

محمد الباجس
05-03-2010, 07:35 AM
حل المثلث أ ب حـ القائم فى حـ فيه أ ب = 11.5 سم ، أحـ =6سم

محمد كامل فوده
05-03-2010, 10:07 AM
بارك الله فيك ابو يوسف

محمد الباجس
05-03-2010, 02:09 PM
بارك الله فيك ابو يوسف
وبارك الله فيك أستاذنا الكبير

محمد الباجس
05-03-2010, 03:03 PM
http://dc09.arabsh.com/i/01236/t3f4z2tn1q0h.gif

محمد الباجس
06-03-2010, 05:27 AM
الايوجد حلول ومشاركات

محمد الباجس
06-03-2010, 05:29 AM
اين الردود والمشاركات

محمد الباجس
06-03-2010, 05:57 AM
http://dc09.arabsh.com/i/01240/fziqtcjjm8m1.gif

محمد الباجس
06-03-2010, 08:28 PM
اين الردود

محمد الباجس
06-03-2010, 08:32 PM
اين الردود والمشاركات
اين الردود

نوكيا 2009
06-03-2010, 10:20 PM
لا اله الا الله محمد رسول الله

تامر الشافعي
06-03-2010, 10:30 PM
اللمميز = ب ^ 2 - 4 أ جـ
أ = ( أ ^ 2 )
ب = (- 2 أ ^ 2 )
جـ = ( أ ^ 4 )

تامر الشافعي
06-03-2010, 10:40 PM
اللمميز = ب ^ 2 - 4 أ جـ
أ = ( أ ^ 2 )
ب = (- 2 أ ^ 3 )
جـ = ( أ ^ 4 )
و بالتعويض عن المميز ينتج ان قيمتة
- 4 أ ^ 4
و هي سالبة دائما لجميع قيم أ تنتمي ح - { 0 }
ينتج ا ن المميز سالب
أنه لجميع قيم أ الحقيقية عدا الصفر لايكون للمعادلة
(أ^2 +1) س^2-2 أ^3 س +أ^4=0جذور حقيقية

نوكيا 2009
06-03-2010, 11:20 PM
لا اله الا الله محمد رسول الله:078111rg3:

نوكيا 2009
06-03-2010, 11:22 PM
ياااااااااااااااااااااااااااااااااااااااارب

امير من مصر
07-03-2010, 09:37 PM
انا اسف بس ايه المطلوب حله فى المساله دى يعنى حضرتك عيزنا نوجد ايه او نثبت ايه

محمد الباجس
08-03-2010, 05:10 AM
حل المثلث القائم بمعنى ايجاد اطوال اضلاعه وقياسات زواياه الداخلية

محمد الباجس
19-03-2010, 07:20 AM
اذا كان ل,م هما جذرا المعادلة أس^2 +ب س + ب =0
أثبت أن (1/ل) +(1/م)+1 =0
ثم كون المعادلة التى جذريها
1/ل , 1/م

محمد الباجس
19-03-2010, 07:24 AM
اذا كان ل+2 ، م+2 جذرى المعادلة س^2 -11س +3=0
فأوجد المعادلة التى جذريها ل,م

محمد الباجس
19-03-2010, 07:28 AM
اذا كان ل,م هما جذرا المعادلة س^2 -4س +2=0 حيث ل>م
فأوجد قيمة 2م^2 -8م +15

salli
19-03-2010, 07:35 PM
الحل سهل خالص
(ل+2)+(م+2)=ل+م+4=-(-11/1)=11-4=7
ل+م=7
(ل+2)(م+2)=3
ل م+4+2(م+ل)=ل م+4+2(7)
=ل م+18
ل م=3-18
ل م=-15
المعادلة تساوي
س^2-7س-15=0

محمد الباجس
19-03-2010, 10:26 PM
بارك الله في من اجتهد

خوارزمي العرب
19-03-2010, 10:53 PM
بالتعويض عن م في المعادله م2 ــ 4م + 2 = 0
بالضرب في 2 تصبح المعادله 2 م2 ـــ 8م + 4 = 0
2م2 ـــ 8م = ـــ 4 المقد ار ـــ4 + 15 =11

خوارزمي العرب
19-03-2010, 10:57 PM
دي سهله جدا عاوزين افكار عاليه

ممدوح مصطفى الانصارى
23-03-2010, 07:45 PM
جزاكم الله خيرا
استاذ محمد
وننتظر تفاعل اعزائنا الطلاب

dalia77
26-03-2010, 04:23 PM
الاثبات سهل
المعادلة الثانية هى س^2+س+أ/ب=0

اسلام رزق
27-03-2010, 11:35 AM
رائـــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــع
بارل الله فيك