مشاهدة النسخة كاملة : geometric sequence problem ارجو المساعدة من استاذ متخصص


karimadel7
14-03-2011, 08:16 PM
a G.S :the sum of first three terms equals 7 and the sum of their cubes equals 73
find the sequence

MathPrince
16-03-2011, 10:28 PM
Let the the numbers http://latex.codecogs.com/gif.latex?a,ar,ar^{2} so there sum will be


http://latex.codecogs.com/gif.latex?a+ar+ar^{2}=7........................... ...........(1)


and the sum of there cubes will be


http://latex.codecogs.com/gif.latex?a^{3}+a^{3}r^{3}+a^{3}r^{6}=73.......... ...............(2)


here we have two equations in two variables so we can solve it
subtract (2) from (1)


http://latex.codecogs.com/gif.latex?a^{3}+a^{3}r^{3}+a^{3}r^{6}- a-ar-ar^{2}=66 .........................(3)


divide (2) by (1)


http://latex.codecogs.com/gif.latex?\frac{a^{3}+a^{3}r^{3}+a^{3}r^{6}}{ a+ar+ar^{2}}=\frac{73}{7}

I won't simplify this now because I will need it


http://latex.codecogs.com/gif.latex?7a^{3}+7a^{3}r^{3}+7a^{3}r^{6}-73a-73ar-73ar^{2}=0

put 73 = 66 + 7 we will get


http://latex.codecogs.com/gif.latex?7a^{3}+7a^{3}r^{3}+7a^{3}r^{6}-7a-7ar-7ar^{2}-66(a+ar+ar^{2})=0
............................(4)


substitute from (2) and (3) in (4)


http://latex.codecogs.com/gif.latex?7 \times 66 - 7 \times 66 a =0


http://latex.codecogs.com/gif.latex?1 - a = 0


so a = 1


substitute in number (1)


http://latex.codecogs.com/gif.latex?1+r+r^{2}=7


http://latex.codecogs.com/gif.latex?r^{2}+r-6=0

by factorization


http://latex.codecogs.com/gif.latex?(r - 2)(r + 3) = 0


so r = 2 or r = -3 "refused"


so the sequence is 1 , 2 , 4 , ....................







اللهم أنت ربى لا إله إلا أنت خلقتنى وأنا عبدك وأنا على عهدك ووعدك ما استطعت أعوذ بك من شر ما صنعت أبوء لك بنعمتك على وأبوء بذنبى فاغفر لى فإنه لا يغفر الذنوب إلا أنت

karimadel7
17-03-2011, 04:07 PM
شكرا جدا علي الحل الرائع

karimadel7
17-03-2011, 04:32 PM
انا اسف لكن انا لا افهم من اين جاءت ال)a( في المعادلة التي قبل ال1=a

MathPrince
17-03-2011, 07:28 PM
we take (a) common factor from the last part of the previous equation

a + ar + ar^(2) = 0

in the previous step in the last part so the equation will be in the form "of the last part"

a( 1 + r + r^(2)) = 0