مشاهدة النسخة كاملة : شرح قوانين thermodynamic 
 
عاطف خليفة 29-09-2008, 04:02 AM 0. If two systems are in thermal equilibrium with a third system, then they must be in thermal equilibrium with each other. 1. http://scienceworld.wolfram.com/physics/timg81.gif, where dE is the energy change, http://scienceworld.wolfram.com/physics/timg83.gif is the change in heat, dW is the work done, T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html), dS is the change in entropy (http://scienceworld.wolfram.com/physics/Entropy.html), P is the pressure (http://scienceworld.wolfram.com/physics/Pressure.html), and dV is the volume change. 2. The second law of thermodynamics prohibits the construction of a perpetual motion machine (http://scienceworld.wolfram.com/physics/PerpetualMotionMachine.html) of `the second kind.' A consequence is the result that http://scienceworld.wolfram.com/physics/timg87.gif. 3. As temperature (http://scienceworld.wolfram.com/physics/Temperature.html) goes to 0, the entropy (http://scienceworld.wolfram.com/physics/Entropy.html) S approaches a constant http://scienceworld.wolfram.com/physics/timg88.gif. Combining the first and second laws gives the combined law of thermodynamics (http://scienceworld.wolfram.com/physics/CombinedLawofThermodynamics.html)  
http://scienceworld.wolfram.com/physics/timg89.gif  
عاطف خليفة 29-09-2008, 04:04 AM The first law of thermodynamics is a consequence of conservation of energy (http://scienceworld.wolfram.com/physics/ConservationofEnergy.html) and requires that a system may exchange energy with the surroundings strictly by heat (http://scienceworld.wolfram.com/physics/Heat.html) flow or work (http://scienceworld.wolfram.com/physics/Work.html). Therefore, for change in energy dE, heat (http://scienceworld.wolfram.com/physics/Heat.html) change http://scienceworld.wolfram.com/physics/fimg129.gif, work (http://scienceworld.wolfram.com/physics/Work.html) done dW, http://scienceworld.wolfram.com/physics/fimg131.gif  
 
 
For a reversible process (http://scienceworld.wolfram.com/physics/ReversibleProcess.html) in which only expansive work is considered, the first law takes the form http://scienceworld.wolfram.com/physics/fimg132.gif  
 
 
where T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html), dS the entropy (http://scienceworld.wolfram.com/physics/Entropy.html) change, P the pressure (http://scienceworld.wolfram.com/physics/Pressure.html), and dV volume change.  
عاطف خليفة 29-09-2008, 04:06 AM Conservation of Energy 
  
 
If the forces acting on a particle are conservative so that there exists a function http://scienceworld.wolfram.com/physics/cimg270.gif such that http://scienceworld.wolfram.com/physics/cimg271.gif  
  
 
then the total energy http://scienceworld.wolfram.com/physics/cimg272.gif  
  
given as the sum of kinetic energy (http://scienceworld.wolfram.com/physics/KineticEnergy.html) and potential energy (http://scienceworld.wolfram.com/physics/PotentialEnergy.html) is a constant  
عاطف خليفة 29-09-2008, 04:07 AM Energyhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
http://scienceworld.wolfram.com/images/gradient-teal.gifhttp://scienceworld.wolfram.com/images/spacer.gifhttp://scienceworld.wolfram.com/images/spacer.gif  
Energy is an abstract quantity of extreme usefulness in physics because it is defined in such a way that the total energy of any closed physical system is always constant (conservation of energy (http://scienceworld.wolfram.com/physics/ConservationofEnergy.html)). It is impossible to overstate the importance of this concept in all branches of physics from elementary mechanics to general relativity (http://scienceworld.wolfram.com/physics/GeneralRelativity.html). Energy is measured in units of mass times velocity squared, and the MKS (http://scienceworld.wolfram.com/physics/MKS.html) and cgs (http://scienceworld.wolfram.com/physics/cgs.html) units of energy are the Joule (http://scienceworld.wolfram.com/physics/Joule.html) and erg (http://scienceworld.wolfram.com/physics/Erg.html), respectively. Other common units of energy include the Btu (http://scienceworld.wolfram.com/physics/Btu.html), calorie (http://scienceworld.wolfram.com/physics/Calorie.html), and kilowatt hour (http://scienceworld.wolfram.com/physics/KilowattHour.html).  
 
The important quantity in physics known as work (http://scienceworld.wolfram.com/physics/Work.html), which is the product of applied force over a distance, has units of energy. In fact, the notion that heat (http://scienceworld.wolfram.com/physics/Heat.html) is a form of energy (http://scienceworld.wolfram.com/physics/Energy.html) was one of the most important developments in classical physics and thermodynamics. Energy is related to power (http://scienceworld.wolfram.com/physics/Power.html) P emitted over a time t by http://scienceworld.wolfram.com/physics/eimg329.gif  
عاطف خليفة 29-09-2008, 04:10 AM Conservation of Energyhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
http://scienceworld.wolfram.com/images/gradient-teal.gifhttp://scienceworld.wolfram.com/images/spacer.gifhttp://scienceworld.wolfram.com/images/spacer.gif     
If the forces acting on a particle are conservative so that there exists a function http://scienceworld.wolfram.com/physics/cimg270.gif such that http://scienceworld.wolfram.com/physics/cimg271.gif  
 
then the total energy http://scienceworld.wolfram.com/physics/cimg272.gif  
 
given as the sum of kinetic energy (http://scienceworld.wolfram.com/physics/KineticEnergy.html) and potential energy (http://scienceworld.wolfram.com/physics/PotentialEnergy.html) is a constant.  
عاطف خليفة 29-09-2008, 04:11 AM Energy Densityhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
http://scienceworld.wolfram.com/images/gradient-teal.gifhttp://scienceworld.wolfram.com/images/spacer.gifhttp://scienceworld.wolfram.com/images/spacer.gif Energy density is the amount of energy stored in a given system or region of space per unit volume, and is most commonly denoted u. It therefore has units of energy per length cubed.  
عاطف خليفة 29-09-2008, 04:16 AM Energy Fluxhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
http://scienceworld.wolfram.com/images/gradient-teal.gifhttp://scienceworld.wolfram.com/images/spacer.gifhttp://scienceworld.wolfram.com/images/spacer.gif  
http://scienceworld.wolfram.com/physics/eimg331.gif(1) 
  
  
 
The mean energy flux (http://scienceworld.wolfram.com/physics/Flux.html) is http://scienceworld.wolfram.com/physics/eimg332.gif, also written as http://scienceworld.wolfram.com/physics/eimg333.gif and called I, the intensity (http://scienceworld.wolfram.com/physics/Intensity.html). For a traveling wave, http://scienceworld.wolfram.com/physics/eimg335.gif(2) 
 
  
  
 
The unit of energy flux is 1 J m-2 s-1 = 1 kg s-3. For radiation, consider a half-plane filled with energy density (http://scienceworld.wolfram.com/physics/EnergyDensity.html) u, then http://scienceworld.wolfram.com/physics/eimg336.gif(3) 
 
  
where c is the speed of light (http://scienceworld.wolfram.com/physics/SpeedofLight.html), http://scienceworld.wolfram.com/physics/eimg124.gif is the angle from the propagation axis, a is the radiation constant (http://scienceworld.wolfram.com/physics/RadiationConstant.html), T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html), and http://scienceworld.wolfram.com/physics/eimg30.gif is the Stefan-Boltzmann constant (http://scienceworld.wolfram.com/physics/Stefan-BoltzmannConstant.html) 
  
  
  
  
http://scienceworld.wolfram.com/images/tealtab_topright.gif 
  
  
  
http://scienceworld.wolfram.com/images/tealtab_topright.gif 
  
  
  
Foot Pound 
 
  
A unit of energy (http://scienceworld.wolfram.com/physics/Energy.html) equal to http://scienceworld.wolfram.com/physics/fimg176.gif http://scienceworld.wolfram.com/physics/fimg177.gif http://scienceworld.wolfram.com/physics/fimg178.gif  
عاطف خليفة 29-09-2008, 04:20 AM Heat 
  
  
 
The first law of thermodynamics (http://scienceworld.wolfram.com/physics/FirstLawofThermodynamics.html) http://scienceworld.wolfram.com/physics/himg112.gif(1) 
 
 
where http://scienceworld.wolfram.com/physics/himg113.gif is the heat change, dE is the energy change, http://scienceworld.wolfram.com/physics/himg115.gif is the work done, P is the pressure (http://scienceworld.wolfram.com/physics/Pressure.html), dV is the volume change, T is the temperature, and dS is the entropy (http://scienceworld.wolfram.com/physics/Entropy.html) change, can be written at constant volume as http://scienceworld.wolfram.com/physics/himg118.gifhttp://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg119.gif(2) http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg120.gif  http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg121.gif(3) http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg122.gif  http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg123.gif  http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg124.gif(4) 
 
where http://scienceworld.wolfram.com/physics/himg125.gif is the heat capacity (http://scienceworld.wolfram.com/physics/HeatCapacity.html) at constant pressure, http://scienceworld.wolfram.com/physics/himg126.gif is the thermal expansion coefficient (http://scienceworld.wolfram.com/physics/ThermalExpansionCoefficient.html), and http://scienceworld.wolfram.com/physics/himg127.gif is the isothermal bulk modulus (http://scienceworld.wolfram.com/physics/IsothermalBulkModulus.html).  
 
At constant pressure, http://scienceworld.wolfram.com/physics/himg128.gifhttp://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg129.gif(5) http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg130.gif  http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg131.gif(6) http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg132.gif    (7) http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg133.gif  http://scienceworld.wolfram.com/physics/himg48.gifhttp://scienceworld.wolfram.com/physics/himg134.gif(8) 
 
where http://scienceworld.wolfram.com/physics/himg135.gif is the heat capacity (http://scienceworld.wolfram.com/physics/HeatCapacity.html) at constant volume.  
***star*** 29-09-2008, 05:18 AM 10/10.................  
عاطف خليفة 29-09-2008, 08:02 PM Second Law of Thermodynamics 
  
The second law of thermodynamics prohibits the construction of a perpetual motion machine (http://scienceworld.wolfram.com/physics/PerpetualMotionMachine.html) "of the second kind." There are two usual statements of this law. Kelvin's (http://scienceworld.wolfram.com/biography/Kelvin.html) http://scienceworld.wolfram.com/images/crossrefs/biography.gif formulation states that it is impossible for a system operating in a cycle and in contact with one thermal reservoir to perform positive work in the surroundings. Clausius's (http://scienceworld.wolfram.com/biography/Clausius.html) http://scienceworld.wolfram.com/images/crossrefs/biography.gif formulation states that it is impossible for a system operating in a cycle to produce positive heat flow from a colder body to a hotter body.  
عاطف خليفة 29-09-2008, 08:04 PM Combined Law of Thermodynamics 
  
 
For energy E, temperature T, pressure P, and volume V, http://scienceworld.wolfram.com/physics/cimg226.gif  
 
  
  
Entropyhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
  
  
  
  
 
Entropy is a measure of the disorder of a system, and is defined by http://scienceworld.wolfram.com/physics/eimg346.gif(1) 
 
  
 
where http://scienceworld.wolfram.com/physics/eimg114.gif is the number of states (http://scienceworld.wolfram.com/physics/States.html) of a system. In terms of the partition function (http://scienceworld.wolfram.com/physics/PartitionFunction.html) Z, http://scienceworld.wolfram.com/physics/eimg348.gif(2)  
عاطف خليفة 29-09-2008, 08:13 PM Reversible Process 
 
  
A reversible process is one in which the timescale is assumed to be so slow that every intermediate state deviates only infinitesimally from equilibrium (http://scienceworld.wolfram.com/physics/Equilibrium.html). Every intermediate state is exactly described by a set of macroscopic thermodynamic variables and may be assumed to be at equilibrium. Since every intermediate state is exactly known, the process may be reversed at an infinitesimally slow rate. This may be simply illustrated by imagining a cylinder with a frictionless piston on the top. Further imagine that there is a quantity of sand on top of the piston. A good approximation to a reversible process would be realized by removing the sand one grain at a time and carefully recording the thermodynamic variables (temperature and pressure in this case) after each grain of sand is removed. This would be a reversible expansion and one could individually return the grains of sand one at a time and reproduce each intermediate state exactly, thus reversing the transformation.  
Equilibrium (http://scienceworld.wolfram.com/physics/topics/Equilibrium.html)http://scienceworld.wolfram.com/images/teal_downarrow.gif 
  
Equilibrium Constanthttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
  
  
  
 
The equilibrium constant for a chemical reaction is given by http://scienceworld.wolfram.com/physics/eimg351.gif  
 
  
  
where http://scienceworld.wolfram.com/physics/eimg352.gif is the Helmholtz free energy (http://scienceworld.wolfram.com/physics/HelmholtzFreeEnergy.html), k is the Stefan-Boltzmann constant (http://scienceworld.wolfram.com/physics/Stefan-BoltzmannConstant.html), and T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html) 
  
Helmholtz Free Energyhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
 
  
  
 
The Helmholtz free energy is defined by http://scienceworld.wolfram.com/physics/himg186.gif(1) 
 
  
  
 
where E is the energy, T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html), and S is the entropy (http://scienceworld.wolfram.com/physics/Entropy.html). When a system changes its thermodynamic state, the change in Helmholtz free energy is therefore given by http://scienceworld.wolfram.com/physics/himg187.gif(2) 
 
  
  
 
If T and V are constant, the (2) reduces to http://scienceworld.wolfram.com/physics/himg188.gif(3) 
 
  
  
 
But the combined law of thermodynamics (http://scienceworld.wolfram.com/physics/CombinedLawofThermodynamics.html) states that http://scienceworld.wolfram.com/physics/himg189.gif(4) 
 
  
  
 
and, since we have stipulated dV = 0, this becomes http://scienceworld.wolfram.com/physics/himg191.gif(5) 
 
  
  
 
Therefore http://scienceworld.wolfram.com/physics/himg192.gif(6) 
 
  
  
 
The Helmholtz free energy is intimately related to the equilibrium constant (http://scienceworld.wolfram.com/physics/EquilibriumConstant.html) at constant volume http://scienceworld.wolfram.com/physics/himg193.gif via http://scienceworld.wolfram.com/physics/himg194.gif(7) 
 
  
  
where k is Boltzmann's constant (http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html). A system with fixed external parameters in thermal contact with a heat reservoir (http://scienceworld.wolfram.com/physics/HeatReservoir.html) at equilibrium has a minimum Helmholtz free http://scienceworld.wolfram.com/physics/himg195.gifenergy, commonly denoted  
عاطف خليفة 29-09-2008, 08:18 PM Equilibrium Postulatehttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
 
  
 An isolated system in equilibrium is equally likely to be in any of its accessible states 
 
  
Mechanical Equilibrium 
 
 A system is said to be in mechanical equilibrium if http://scienceworld.wolfram.com/physics/mimg206.gif  
 
where http://scienceworld.wolfram.com/physics/mimg207.gif is the applied force and http://scienceworld.wolfram.com/physics/mimg208.gif is the virtual displacement 
 
  
Floating 
  
 
Homogeneous spheres float stably in all possible orientations (Ulam 1960), but it has never been proved that no other homogeneous body shares this property (Gilbert 1991).  
http://scienceworld.wolfram.com/physics/fimg148.gif  
When the two above shapes have uniform density 0.5 they, like the uniform sphere of density 1, will float in a liquid in any orientation without tending to rotate (Mauldin 1982, Wells 1991, Gilbert 1991  
عاطف خليفة 29-09-2008, 08:21 PM Thermodynamic Lawshttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
 
  
  
0. If two systems are in thermal equilibrium with a third system, then they must be in thermal equilibrium with each other. 1. http://scienceworld.wolfram.com/physics/timg81.gif, where dE is the energy change, http://scienceworld.wolfram.com/physics/timg83.gif is the change in heat, dW is the work done, T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html), dS is the change in entropy (http://scienceworld.wolfram.com/physics/Entropy.html), P is the pressure (http://scienceworld.wolfram.com/physics/Pressure.html), and dV is the volume change. 2. The second law of thermodynamics prohibits the construction of a perpetual motion machine (http://scienceworld.wolfram.com/physics/PerpetualMotionMachine.html) of `the second kind.' A consequence is the result that http://scienceworld.wolfram.com/physics/timg87.gif. 3. As temperature (http://scienceworld.wolfram.com/physics/Temperature.html) goes to 0, the entropy (http://scienceworld.wolfram.com/physics/Entropy.html) S approaches a constant http://scienceworld.wolfram.com/physics/timg88.gif. Combining the first and second laws gives the combined law of thermodynamics (http://scienceworld.wolfram.com/physics/CombinedLawofThermodynamics.html)  
http://scienceworld.wolfram.com/physics/timg89.gif  
عاطف خليفة 29-09-2008, 08:22 PM Third Law of Thermodynamics 
  
As temperature (http://scienceworld.wolfram.com/physics/Temperature.html) goes to 0, the entropy (http://scienceworld.wolfram.com/physics/Entropy.html) S approaches a constant http://scienceworld.wolfram.com/physics/timg88.gif. Furthermore, it guarantees that the entropy (http://scienceworld.wolfram.com/physics/Entropy.html) of a pure, perfectly crystalline substance is 0 if the absolute temperature is 0.  
عاطف خليفة 29-09-2008, 08:25 PM Zeroth Law of Thermodynamicshttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
 
If two systems are in thermal equilibrium (http://scienceworld.wolfram.com/physics/ThermalEquilibrium.html) with a third system, then they must be in thermal equilibrium (http://scienceworld.wolfram.com/physics/ThermalEquilibrium.html) with each other.  
عاطف خليفة 29-09-2008, 08:27 PM Blackbody 
  
A hypothetic body that completely absorbs all wavelengths of thermal radiation (http://scienceworld.wolfram.com/physics/ThermalRadiation.html) incident on it. Such bodies do not reflect light, and therefore appear black if their temperatures are low enough so as not to be self-luminous. All blackbodies heated to a given temperature emit thermal radiation (http://scienceworld.wolfram.com/physics/ThermalRadiation.html) with the same spectrum, as required by arguments of classical physics involving thermal equilibrium. However, the distribution of blackbody radiation (http://scienceworld.wolfram.com/physics/BlackbodyRadiation.html) as a function of wavelength, known as the Planck law (http://scienceworld.wolfram.com/physics/PlanckLaw.html), cannot be predicted using classical physics. This fact was the first motivating force behind the development of quantum mechanics (http://scienceworld.wolfram.com/physics/QuantumMechanics.html)  
عاطف خليفة 29-09-2008, 08:28 PM Blackbody Radiation 
  
   The thermal radiation (http://scienceworld.wolfram.com/physics/ThermalRadiation.html) emitted by a blackbody (http://scienceworld.wolfram.com/physics/Blackbody.html) heated to a given temperature (http://scienceworld.wolfram.com/physics/Temperature.html). All blackbodies heated to a given temperature emit thermal radiation (http://scienceworld.wolfram.com/physics/ThermalRadiation.html) with the same spectrum, known as the Planck law (http://scienceworld.wolfram.com/physics/PlanckLaw.html).  
عاطف خليفة 29-09-2008, 08:34 PM Blackbody Temperature 
The effective temperature (http://scienceworld.wolfram.com/physics/Temperature.html) at which a blackbody (http://scienceworld.wolfram.com/physics/Blackbody.html) emits blackbody radiation (http://scienceworld.wolfram.com/physics/BlackbodyRadiation.html).  
  
Plack Energ 
  
http://scienceworld.wolfram.com/images/tealtab_topright.gif 
 
 
The Planck energy is the average energy of an oscillator, http://scienceworld.wolfram.com/physics/pimg239.gif(1) 
 
 
The Planck postulate (http://scienceworld.wolfram.com/physics/PlanckPostulate.html) states that http://scienceworld.wolfram.com/physics/pimg240.gif(2) 
 
 
where n is a nonnegative integer, h is Planck's constant (http://scienceworld.wolfram.com/physics/PlancksConstant.html), and http://scienceworld.wolfram.com/physics/pimg224.gif is the frequency of radiation. Maxwell-Boltzmann statistics (http://scienceworld.wolfram.com/physics/Maxwell-BoltzmannStatistics.html) give http://scienceworld.wolfram.com/physics/pimg241.gif(3) 
 
 
where C is a constant, k is Boltzmann's constant (http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html), and T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html). Plugging in, http://scienceworld.wolfram.com/physics/pimg242.gif(4) 
  
Planck Intensity Densityhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
http://scienceworld.wolfram.com/images/gradient-teal.gif 
 
In terms of frequency, the energy flux from blackbody radiation is given by http://scienceworld.wolfram.com/physics/pimg243.gifhttp://scienceworld.wolfram.com/physics/pimg15.gifhttp://scienceworld.wolfram.com/physics/pimg244.gif  http://scienceworld.wolfram.com/physics/pimg15.gifhttp://scienceworld.wolfram.com/physics/pimg245.gif  http://scienceworld.wolfram.com/physics/pimg15.gifhttp://scienceworld.wolfram.com/physics/pimg246.gif(1) 
 
where http://scienceworld.wolfram.com/physics/pimg247.gif is the average energy density, http://scienceworld.wolfram.com/physics/pimg248.gif is Planck energy (http://scienceworld.wolfram.com/physics/PlanckEnergy.html), N is the number density of oscillators, h is Planck's constant (http://scienceworld.wolfram.com/physics/PlancksConstant.html), k is Boltzmann's constant (http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html), and T is the temperature (http://scienceworld.wolfram.com/physics/Temperature.html). Here, http://scienceworld.wolfram.com/physics/pimg249.gif(2) 
 
 
is the number of cells per unit phase space. The factor of 2 must be added since two electrons with opposite spins may occupy the same element of phase space. The momentum (http://scienceworld.wolfram.com/physics/Momentum.html) of a photon (http://scienceworld.wolfram.com/physics/Photon.html) is given by http://scienceworld.wolfram.com/physics/pimg250.gif(3) 
 
 
so http://scienceworld.wolfram.com/physics/pimg251.gif(4) 
 
 
and http://scienceworld.wolfram.com/physics/pimg252.gif(5) 
 
 
where http://scienceworld.wolfram.com/physics/pimg206.gif is an element of solid angle. Plugging in, http://scienceworld.wolfram.com/physics/pimg243.gifhttp://scienceworld.wolfram.com/physics/pimg15.gifhttp://scienceworld.wolfram.com/physics/pimg253.gif  http://scienceworld.wolfram.com/physics/pimg15.gifhttp://scienceworld.wolfram.com/physics/pimg254.gif 
  
Planck Law 
  
 
Planck Lawhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
http://scienceworld.wolfram.com/images/gradient-teal.gifhttp://scienceworld.wolfram.com/images/spacer.gifhttp://scienceworld.wolfram.com/images/spacer.gif     
http://scienceworld.wolfram.com/physics/pimg255.gif  
 
The Planck law gives the intensity radiated by a blackbody as a function of frequency (or wavelength). Let a blackbody (http://scienceworld.wolfram.com/physics/Blackbody.html) have temperature (http://scienceworld.wolfram.com/physics/Temperature.html) T. Let http://scienceworld.wolfram.com/physics/pimg256.gif be the energy density per unit solid angle so that http://scienceworld.wolfram.com/physics/pimg257.gif(1) 
 
then the blackbody radiates at a frequency http://scienceworld.wolfram.com/physics/pimg224.gif with spectral energy density http://scienceworld.wolfram.com/physics/pimg258.gif(2) 
 
where h is Planck's constant (http://scienceworld.wolfram.com/physics/PlancksConstant.html), c is the speed of light (http://scienceworld.wolfram.com/physics/SpeedofLight.html), and k is Boltzmann's constant (http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html) (Rybicki and Lightman 1979, p. 21).  
عاطف خليفة 29-09-2008, 08:37 PM وسنكمل ان شاء الله 
  
يتبع  
احمد زايد 01-10-2008, 12:14 AM جزاك الله كل خير  
عاطف خليفة 03-10-2008, 11:01 PM Planck Occupancy 
  
 
In terms of frequency, http://scienceworld.wolfram.com/physics/pimg263.gif(1) 
 
 
and in terms of wavelength http://scienceworld.wolfram.com/physics/pimg264.gif  
عاطف خليفة 03-10-2008, 11:04 PM Planck Postulate 
  
 
  
Planck (http://scienceworld.wolfram.com/biography/Planck.html) http://scienceworld.wolfram.com/images/crossrefs/biography.gif postulated that the energy of oscillators in a blackbody (http://scienceworld.wolfram.com/physics/Blackbody.html) is quantized by http://scienceworld.wolfram.com/physics/pimg265.gif(1) 
 
 
where n = 1, 2, 3, ..., h is Planck's constant (http://scienceworld.wolfram.com/physics/PlancksConstant.html), and http://scienceworld.wolfram.com/physics/pimg224.gif is the frequency, and used this postulate in his derivation of the Planck law (http://scienceworld.wolfram.com/physics/PlanckLaw.html) of blackbody radiation. In fact, electromagnetic radiation is itself quantized, coming in packets known as photons (http://scienceworld.wolfram.com/physics/Photon.html) and having energy http://scienceworld.wolfram.com/physics/pimg237.gif(2) 
 
In the other hand, the energy of state n of quantum mechanical simple harmonic oscillator (http://scienceworld.wolfram.com/physics/SimpleHarmonicOscillatorQuantumMechanical.html) is actually given by the slightly modified form http://scienceworld.wolfram.com/physics/pimg267.gif(3)  
عاطف خليفة 03-10-2008, 11:05 PM Radiation Constanthttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
 
  
 
The constant related to the total energy radiated by a blackbody (http://scienceworld.wolfram.com/physics/Blackbody.html) (i.e., the Stefan-Boltzmann law (http://scienceworld.wolfram.com/physics/Stefan-BoltzmannLaw.html)), and defined as http://scienceworld.wolfram.com/physics/rimg24.gifhttp://scienceworld.wolfram.com/physics/rimg16.gifhttp://scienceworld.wolfram.com/physics/rimg25.gif  http://scienceworld.wolfram.com/physics/rimg26.gifhttp://scienceworld.wolfram.com/physics/rimg27.gif  
 
where http://scienceworld.wolfram.com/physics/rimg28.gif is the Stefan-Boltzmann constant (http://scienceworld.wolfram.com/physics/Stefan-BoltzmannConstant.html), c is the speed of light (http://scienceworld.wolfram.com/physics/SpeedofLight.html), k is Boltzmann's constant (http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html), and h is Planck's constant (http://scienceworld.wolfram.com/physics/PlancksConstant.html). Numerically, http://scienceworld.wolfram.com/physics/rimg24.gifhttp://scienceworld.wolfram.com/physics/rimg26.gifhttp://scienceworld.wolfram.com/physics/rimg31.gif  http://scienceworld.wolfram.com/physics/rimg26.gifhttp://scienceworld.wolfram.com/physics/rimg32.gif  
عاطف خليفة 03-10-2008, 11:07 PM Radiometer Equationhttp://scienceworld.wolfram.com/images/tealtab_topright.gif 
 
  
http://scienceworld.wolfram.com/physics/rimg109.gif  
 
  
 
where http://scienceworld.wolfram.com/physics/rimg110.gif is the root-mean-square noise, http://scienceworld.wolfram.com/physics/rimg111.gif is a factor http://scienceworld.wolfram.com/physics/rimg112.gif, B is the bandwidth, and http://scienceworld.wolfram.com/physics/rimg91.gif is the integration time.  
عاطف خليفة 03-10-2008, 11:09 PM Rayleigh-Jeans Law 
  
  
 
http://scienceworld.wolfram.com/physics/rimg141.gif  
 
A classical law approximately describing the intensity of radiation emitted by a blackbody (http://scienceworld.wolfram.com/physics/Blackbody.html), derived by Rayleigh and Jeans by counting the number of standing wave modes in an enclosure. It corresponds to the Planck law (http://scienceworld.wolfram.com/physics/PlanckLaw.html) in the case of small frequencies, in which case http://scienceworld.wolfram.com/physics/rimg142.gif allows the approximation http://scienceworld.wolfram.com/physics/rimg143.gif(1) 
 
 
Plugging this into the Planck law (http://scienceworld.wolfram.com/physics/PlanckLaw.html) gives http://scienceworld.wolfram.com/physics/rimg144.gifhttp://scienceworld.wolfram.com/physics/rimg145.gifhttp://scienceworld.wolfram.com/physics/rimg146.gif  http://scienceworld.wolfram.com/physics/rimg26.gifhttp://scienceworld.wolfram.com/physics/rimg147.gif(2)  
mohamed* 19-09-2010, 04:07 PM شكرا ليك جدا  
 |