جمهورية مصر العربية

وزارة التربية والتعليم

امتحان شهادة إتمام الدراسة الثانوية العامة المصرية بجمهورية السودان لعام 2014

(نظام حديث / الدور الأول)

الزمن / ثلاث ساعات

الفيزياء

(الأسئلة في أربع صفحات)

أجب عن أربعة أسئلة فقط مما يأتى:

السوال الأول:

(أ) ما الفكرة العملية التي بني عليها كلاً مما يأتي .. ؟

1- الجلفانومتر الحساس.

3- المحول الكهربي. 4- القطار الطائر.

5- أنبوبة أشعة الكاثود.

(ب) أولاً: اذكر الكميات الفيزيائية التي تقاس بالوحدات التالية:

Ω. sec -1

Volt.sec -2

 ${\rm Kg} \; m^2 s^{-1}$ -3

ثانياً: متى تكون القيم التالية مساوية للصفر..؟

- 1- القوة المؤثرة على سلك مستقيم يمر به تيار كهربى وموضوع داخل مجال مغناطيسي منتظم.
 - 2- مقاومة موصل من البلاتين متصل بدائرة كهربية يمر بها تيار.
 - 3- شدة التيار المار في الملف الابتدائي لمحول كهربي متصل بمصدر تيار متردد.
 - (ج) من الدائرة الموضحة بالرسم أوجد كلاً من:
 - 1- المقاومة الكلية للدائرة.
 - 2- القوة الدافعة الكهربية للمصدر
 - عندما تكون قراءة الأميتر A 1.

السؤال الثاني:

- (أ) ما المقصود بكل مما يأتى..؟
 - 1- الضخ الضوئي.
 - 3- تيار الانتشار.
- 5- نسبة توزيع التيار في الترانزستور.

- الليزر.

2- القطار الطائر.

:

ل مغناطيسي منتظم.

4Ω 8Ω 3Ω 12Ω 8Ω 2 5Ω

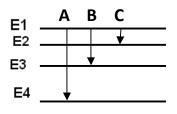
r = 2 Ω

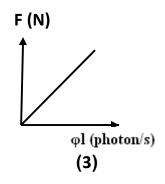
2- المقاومة النوعية لمادة موصل.

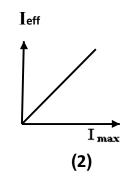
4- كفاءة المحول.

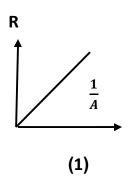
...

(ب) أولاً: الشكل المقابل يوضح عدة انتقالات A, B, C لإلكترون


فى ذرة الهيدروجين.


1- أي الانتقالات يعطى طول موجى أقل؟


2- أي الانتقالات يعطى إشعاع في مجموعة باشن؟


3- أي الإشعاعات تقع في منطقة الضوء المرئى؟

ثانياً: اذكر ما يساويه الميل في العلاقات البيانية الآتية:

(ج) سلكان متوازيان (A) ، (B) يمر بالسلك (A) تيار شدته 5 A وبالسلك (B) تيار شدته 8 A فإذا وضعت إبرة مغناطيسية بين السلكين وعلى بعد 10 cm من السلك (A) ولم تنحرف. فهل التيارين بين السلكين في اتجاه واحد أم في اتجاهين متضادين؟ ولماذا؟ ثم احسب:

1- المسافة بين السلكين.

2- القوة المؤثرة على سلك ثالث (C) طوله 2 m ويمر به تيار شدته 2 A موضوع مكان الإبرة إذا عكس اتجاه التيار في أحد السلكين.

السؤال الثالث:

(أ) قارن بين كل مما يأتي:

1- سائل الهليوم وسائل النيتروجين من حيث طريقة حفظ كلاً منهما.

2- شعاع الضوء العادي وشعاع الليزر من حيث تركيز الأشعة.

3- مجزئ التيار ومضاعف الجهد من حيث طريقة توصيل كل منهما بالجلفانومتر.

4- التوصيل على التوالي والتوصيل على التوازي من حيث العلاقة الرياضية المستخدمة لحساب المقاومة الكلية.

5- الطيف المستمر والطيف الخطي المميز للأشعة السينية من حيث طريقة الحصول على كل منهما.

(ب) أولاً: اذكر العلاقة الرياضية التي تدل على كل مما يأتي:

1- قانون فعل الكتلة في أشباه الموصلات. 2- الكتلة والطاقة حسب إثبات أينشتين.

3- قانون أوم لدائرة مغلقة.

ثانيا: اشرح مع الرسم تجربة عملية لبيان ظاهرة الحث الذاتي.

(ج) ملف دینامو تیار متردد یتکون من 200 لفة مساحة مقطع کل منها $2 \times 10^{-2} \, m^2$ یدور داخل مجال مغناطیسی کثافة فیضه $3 \times 10^{-2} \, m^2$ لیعطی قوة دافعة کهربیة قیمتها الفعالة 88.8 volt احسب کل من:

1- القيمة العظمى للقوة الدافعة الكهربية. 2- السرعة الزاوية

 $(\pi = 3.14)$ تردد التيار (علماً بأن $\pi = 3.14$

السؤال الرابع:

(أ) اكتب المصطلح الدال على كل عبارة مما يأتى:

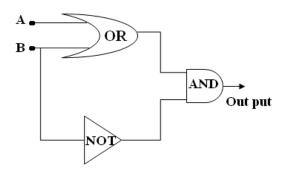
1- حزمة من الأشعة المتوازية تلتقي مع الأشعة التي تترك الجسم المضاء حاملة المعلومات في التصوير المجسم.

2- طيف يتضمن توزيع غير مستمر للترددات أو الأطوال الموجية.

3- كم من الطاقة مركز في حيز صغير جداً وله كتلة وله كمية حركة.

4- يكون اتجاه التيار المستحث في ملف بحيث يعاكس التغير في الفيض المسبب.

5- التأثير الذي يعبر عن قوى التجاذب بين جزيئات الغاز.


(ب) بم تفسر...؟

1- ارتفاع درجة حرارة أسطوانة من الحديد المطاوع ملفوف حولها ملف متصل بمصدر تيار متردد.

2- متوسط e.m.f المستحثة في ملف الدينامو $\frac{1}{4}$ دورة = متوسط e.m.f الدينامو $\frac{1}{4}$ دورة.

3- تقعر قطبا المغناطيس في الجلفانومتر.

ثانيا: أكمل جدول التحقق التالي:

Α	В	Out
0	0	
1	0	
1	1	

(ج) جلفانومتر حساس مقاومة ملفه Ω 80 ينحرف مؤشره لنهاية تدريجه بمرور تيار شدته 20 mA احسب:

1- قيمة مجزئ التيار اللازم توصيله مع ملف الجلفانومتر ليكون نهاية تدريجه 5A .

2- قيمة مضاعف الجهد اللازم توصيله مع ملف الجلفانومتر ليكون نهاية تدريجه V 10 V.

<u>السؤال الخامس:</u>

- (أ) اذكر عاملا واحدا يتوقف عليه كل مما يأتى:
- 1- انبعاث الإلكترونات الكهروضوئية من سطح المعدن.
- 2- كثافة الفيض المغناطيسى عند مركز ملف دائرى يمر به تيار.
 - 3- التوصيلية الكهربية لمادة موصل.
- 4- الشغل الميكانيكي المبذول من جزيئات الغاز في التغير الأيزوثرمي.
 - 5- الطول الموجى المصاحب لأقصى شدة إشعاع.
 - (ب) أولاً: اختر الإجابة الصحيحة مما بين القوسين:
- 1- موصل مقاومتة Ω 20 عندما يمر به تيار شدته Ω فإذا مر بنفس الموصل تيار شدته Ω فإن مقاومته تكون

$$(\Omega 10 - \Omega 40 - \Omega 20)$$

2- النقاء الطيفى لأشعة الليزر يعنى أنها

3- حاملات الشحنة في البللورة الموجبة هي

ثانياً: اذكر استخداما واحداً لكل مما يأتى:

2- المرآتان العاكستان في جهاز الليزر.

- 1- أنبوبة كولدج.
- 3- الأسطوانة المعدنية الجوفاء المشقوقة إلى نصفين معزولين عن بعضهما في الدينامو.
- (ج) تحرك سلك مستقيم طوله 20 cm داخل فيض مغناطيسي منتظم وعمودي عليه والجدول التالي يوضح العلاقة بين e.m.f المتولدة في السلك عند تغيير سرعة الحركة.

e.m.f (V)	0.01	0.02	0.03	0.05	а
V (m/s)	0.25	0.5	0.75	b	1.5

ارسم العلاقة بين e.m.f المتولدة في السلك على المحور الرأسي والسرعة على المحور الأفقي ومن الرسم أوجد:

- 1- قيمة كل من a,b.
- 2- كثافة الفيض المغناطيسي.

انتهت الأسئلة