Equilibrium Problems #2

When 3.556g of ammonia {NH₃(g)} and 9.924g of oxygen {O₂(g)} are sealed together in a 5.000L vessel, they reach equilibrium with nitrogen dioxide {NO₂(g)} and water {H₂O(g)}. If the equilibrium concentration of water is found to be 2.473×10^{-3} M:

		$4 \text{ NH}_3(g) +$	$7 O_2(g) \leftrightarrows$	$4 \text{ NO}_2(g) +$	6 H ₂ O(g)	
	Initial	$(3.556 \text{g}/28.014^{\text{g}}/_{\text{mol}})$	(9.924g/31.998 ^g /mol)			
		/5.00L =	/5.00L =			
		2.539x10 ⁻² M	6.203x10 ⁻² M	0 M	0 M	
	Change	- 4x	- 7x	+4x	+ 6x	
	Equilibrium	$(2.539 \text{x} 10^{-2} - 4 \text{x}) \text{ M}$	$(6.203 \text{ x} 10^{-2} - 7 \text{ x}) \text{ M}$	4x M	6x M	
inc	$[H_2O]_{eq} = 2.473 \times 10^{-3} M$, x = 4.122x10 ⁻⁴ . Plugging in to concentrations:					
	Equilibrium	2.374x10 ⁻² M	5.914x10 ⁻² M	1.649x10 ⁻³ M	2.473x10 ⁻³ M	

a. What are the equilibrium concentrations of all products and reactants?

b. What is the value of the equilibrium constant for this reaction?

Plugging the above concentrations into the equilibrium constant expression:							
$K_{c} = \{(1.648 \times 10^{-3})^{4} (2.473 \times 10^{-3})^{6}\} / \{(2.374 \times 10^{-2})^{4} (5.914 \times 10^{-2})^{7}\}$							
$K_{c} = \{(7.376 \times 10^{-12})(2.287 \times 10^{-10})\} / \{(3.177 \times 10^{-7})(2.530 \times 10^{-9})\}$							
$K_c = 2.099 \times 10^{-12}$							

c. Is the reaction Product-favored or reactant-favored?

Since K_c is much less than 1, the reaction is reactant-favored.

When the tetrachlorocuprate ion $(CuCl_4^{2-})$ is dissolved in water, it reaches equilibrium with Cu^{2+} and Cl^- ions. If 6.854g of $CuCl_4^{2-}$ is dissolved in water to make 250.0 mL of solution, the equilibrium concentration of chloride ion is found to be 7.442x10⁻²M.

		$CuCl_4^{2-}(aq) \leftrightarrows$	$Cu^{2+}(aq) +$	4 Cl ⁻ (aq)				
	Initial	(6.854g/205.358 ^g / _{mol})						
		/0.2500L =						
		0.1335 M	0 M	0 M				
	Change	- X	+ x	+4x				
	Equilibrium	(0.1335 - x) M	x M	4x M				
Since $[Cl]_{eq} = 7.442 \times 10^{-2} \text{ M}$, $x = 1.861 \times 10^{-2} \text{ M}$. Plugging in to concentrations:								
	Equilibrium	0.1149 M	0.01861 M	0.07442 M				

a. What are the equilibrium concentrations of all products and reactants?

b. What is the value of the equilibrium constant for this reaction?

 $K_c = 4.968 \times 10^{-6}$

c. Is the reaction product-favored or reactant-favored?

Since K_c is much less than 1, the reaction is reactant-favored.

d. If the CuCl₄²⁻ listed above were dissolved in a 0.0155 M solution of NaCl(aq) instead of pure water, how would the equilibrium concentrations of all species change?

Since Cl⁻ is a *product* in this reaction, using NaCl(aq) would increase the [Cl⁻(aq)] and force the reaction to shift toward *reactants* to return to equilibrium. Therefore, the concentration of tetrachlorocuprate would increase and the concentration of copper(II) ions would decrease.

Silver bromide has a K_{sp} of 5.0x10⁻¹³. If you were to prepare 5.00 L of a saturated solution of silver bromide, how many grams of silver bromide would be dissolved in this solution?

$$AgBr(s) \leftrightarrows Ag^{+}(aq) + Br^{-}(aq)$$
$$K_{sp} = [Ag^{+}]_{eq}[Br^{-}]_{eq}$$

Every AgBr that dissolves gives equal amounts of $Ag^+(aq)$ and $Br^-(aq)$ so the K_{sp} expression can be simplified to:

$$K_{sp} = x^2$$

x = 7.071x10⁻⁷ M

So in 5.00L of solution, there are 3.536×10^{-6} mols of Ag⁺(aq). This means that 3.536×10^{-6} mols of AgBr(s) must have dissolved, so 6.639×10^{-4} g of AgBr must have dissolved.

If you were to prepare the same solution as above, but instead of water you used 0.100 M potassium bromide solution as your solvent, how much silver bromide would dissolve?

This one probably requires a table:

y requires a table.							
	$AgBr(s) \leftrightarrows$	$Ag^+(aq) +$	Br ⁻ (aq)				
Initial							
		0.100 M	0 M				
Change		+ x	+ x				
Equilibrium		(0.100 + x) M	x M				
	12	•					

 $K_{sp} = [Ag^+]_{eq}[Br^-]_{eq} = (0.100 + x)(x) = 5.0x10^{-13}$ Based upon the first part, it's probably safe to assume that "x" is small compared to 0.100, so this can be simplified as solved, $x = 5.0x10^{-12}$ M. 4.694x10⁻⁹ g of AgBr dissolves.

You have studied the following reaction of the bicarbonate ion: $HCO_3(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$ $K_c = 4.8 \times 10^{-11}$ If you prepare a solution that has an initial bicarbonate concentration $\{[HCO_3(aq)]_0\}$ of 1.388 M, what are the equilibrium concentrations of all species?

Set up a table and you get to: $K_{c} = \{ [H^{+}]_{eq} [CO_{3}^{2^{-}}]_{eq} \} / \{ [HCO_{3}^{-}]_{eq} \} = (x \bullet x) / (1.388 - x)$ Since K_c is very small, the value of x is probably insignificant compared to 1.388, so this could be simplified to: $4.8 \times 10^{-11} = x^2/1.388$ $x = 8.162 \times 10^{-6}$ $[H^+]_{eq} = 8.162 \times 10^{-6} M$ $[CO_3^{2-}]_{eq} = 8.162 \times 10^{-6} M$ $[HCO_3^{-}]_{eq} = 1.388 M$