![]() |
متتابعه حسابيه بالمثلثات
بسم الله الرحمن الرحيم
فى المثلث أ ب حـ اذا كان طتا أ + طتا حـ = 2طتا ب اثبت ان أ’2 + ب’2 + حـ ’2 تكون م.ح |
:av4056bb7jp3:ارجو من الاستاذ الفاضل مراجعة المطلوب وشكرا
mabdalh |
شكرا
اقتباس:
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< <<<<< بسم الله الرحمن الرحيم التصحيح وشكرا لاستاذنا الفاضل اثبت ان أ’2 , ب’2 , حـ ’2 تكون م.ح |
:av4056bb7jp3:شكرا للاستاذ الفاضل على التصحيح
المطلوب اثبات ان ا*2 + ج*2 =2ب*2 الحل بما ان ظتا ا +ظتا ج = 2 ظتاب بالضرب فى ظا ا ظاب ظا ج اذن ظا ب ظا ج +ظا ب ظا ا = 2 ظا ا ظاج اذن جاب\جتاب فى جاج\جتاج+جاب\جتاب فى جاا\جتاا =2جااجاج --------------- جتااجتاج وبتوحيد المقامات والاختصار ينتج ان جاب فى جا( ا+ج)\جتاب =2جا ا جا ج بما ان ا ب ج مثلث اذن ا+ب+ج = 180 اذن ا+ج = 180 - ب اذن جا (ا+ج ) = جا (180-ب) = جاب بما ان ا\ جا ا = ب\جا ب = ج\جاج =ك اذن جا ا = اك و جاب = ب ك و جا ج = ج ك اذن بالتعويض فى 1 اذن ب*2\جتاب =2ا ج وبالتعويض عن جتا ب = ا*2 +ج*2 -ب*2 وبضرب الطرفين فى الوسطين والاختصار اذن ا*2 +ج*2 = 2ب*2 اذن ا* و ب*2 و ج*2 فتتابع حسابى واشكر جميع الاساتذة الذين يبذلون الجهد ليلا ونهارا وبالوقت لخدمة ابنائنا الطلاب ولانريد منكم جزاءا ولاشكورا الا مرضاة الله عز وجل ونسال الجميع الدعاء الخالص mabdalh |
|
جميع الأوقات بتوقيت GMT +2. الساعة الآن 05:19 AM. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.