|
أرشيف المنتدى هنا نقل الموضوعات المكررة والروابط التى لا تعمل |
|
أدوات الموضوع | ابحث في الموضوع | انواع عرض الموضوع |
|
#1
|
|||
|
|||
![]()
أثبت أنّ
قتا 10 - ( جذر 3 ) قا 10 = 4 أرجو الرد السريع |
#2
|
|||
|
|||
![]() اقتباس:
بسم الله الرحمن الرحيم سريع جدا بس راجع: الايمن =(جتا 10- جذر 3 حا10)/حا10جتا10 ={ (جتا 10 -(حا60جا10/جتا60)}/حا10جتا60 = (جتا 10جتا60-جا10حا60)/حا10حا10جتا 60 = جتا (60 +10)/(1/4)جا20 = 4 جا20/جا 20= 4 ولاحظ ان جتا 70 = جا 20 &جا 20 = 2جا10 جتا10 طبعا القوانين معروفه ومع خالص تحياتى... ودعواتكم |
#3
|
|||
|
|||
![]() اقتباس:
|
#4
|
|||
|
|||
![]() .................................................. .................................................. ........................... بسم الله الرحمن الرحيم الله يجبر بخاطرك محمدبك انما احاول الا اشغل الساده الافاضل وحضرتك منهم بمثل هذه المسائل ليتفرغوا لما يقومون به من عظيم الاعمال لخدمة المنتدى... جزاكم الله عنا خيرا |
#5
|
||||
|
||||
![]()
شكرااااااااااااااا
__________________
![]() ![]() |
#6
|
|||
|
|||
![]() اقتباس:
![]() |
#7
|
|||
|
|||
![]()
جتا10 -جزر3جا10
![]() حا10 جتا10 =1\2جتا10 -جزر3 على2 جا10 على1\2جا10جتا10 = جا30جتا10-جتا30جا10 على 1\2فى1\2 ج20 =جا(30-10)على1\4جا20 =جا20 على1\4 جا20 =4 = الايسر |
العلامات المرجعية |
|
|