اهلا وسهلا بك فى بوابة الثانوية العامة ... سجل الان

العودة   بوابة الثانوية العامة المصرية > القسم الإداري > أرشيف المنتدى

أرشيف المنتدى هنا نقل الموضوعات المكررة والروابط التى لا تعمل

 
 
أدوات الموضوع ابحث في الموضوع انواع عرض الموضوع
  #1  
قديم 25-09-2010, 10:42 PM
MathPrince MathPrince غير متواجد حالياً
عضو نشيط
 
تاريخ التسجيل: Apr 2010
المشاركات: 159
معدل تقييم المستوى: 16
MathPrince is on a distinguished road
افتراضي

Permutation:
How many 3-letter code symbols can be formed with the letters A, B, C
without repetition. We can select any of the 3 letters for the first letter in the symbol. Once this letter has been selected, the second must be selected from the 2 remaining letters. After this, the third letter is already determined, since only 1 possibility is left. That is, we can place any of the 3 letters in the first box, either of the remaining 2 letters in the second box, and the only remaining letter in the third box. The possibilities can be arrived at using a tree diagram, as shown below.




We see that there are 6 possibilities. The set of all the possibilities is
{ABC, ACB, BAC, BCA, CAB,CBA}

Combination:
EXAMPLE 1 Find all the combinations of 3 letters taken from the set of 5 letters
{A, B,C, D, E}
Solution The combinations are
{A,B,C} {A,B,D}
{A,B, E} {A,C,D}
{A,C, E} {A,D, E}
{B,C,D} {B,C, E}
{B,D, E} {C,D, E}
There are 10 combinations of the 5 letters taken 3 at a time
When we find all the combinations from a set of 5 objects taken 3 at a time, we are finding all the 3-element subsets. When a set is named, the order of the elements is
not considered. Thus, {A,C,B}names the same set as {A,B,C}.

  #2  
قديم 27-09-2010, 11:13 PM
hohaho hohaho غير متواجد حالياً
عضو جديد
 
تاريخ التسجيل: May 2010
المشاركات: 23
معدل تقييم المستوى: 0
hohaho is on a distinguished road
افتراضي شكرا

اقتباس:
المشاركة الأصلية كتبت بواسطة MathPrince مشاهدة المشاركة
Permutation:


How many 3-letter code symbols can be formed with the letters A, B, C </div></div>
<div align="left">
without repetition. We can select any of the 3 letters for the first letter in the symbol. Once this letter has been selected, the second must be selected from the 2 remaining letters. After this, the third letter is already determined, since only 1 possibility is left. That is, we can place any of the 3 letters in the first box, either of the remaining 2 letters in the second box, and the only remaining letter in the third box. The possibilities can be arrived at using a tree diagram, as shown below.



We see that there are 6 possibilities. The set of all the possibilities is
{ABC, ACB, BAC, BCA, CAB,CBA}

Combination:
EXAMPLE 1 Find all the combinations of 3 letters taken from the set of 5 letters
{A, B,C, D, E}
Solution The combinations are
{A,B,C} {A,B,D}
{A,B, E} {A,C,D}
{A,C, E} {A,D, E}
{B,C,D} {B,C, E}
{B,D, E} {C,D, E}
There are 10 combinations of the 5 letters taken 3 at a time
When we find all the combinations from a set of 5 objects taken 3 at a time, we are finding all the 3-element subsets. When a set is named, the order of the elements is

<div align=&quot;left&quot;>not considered. Thus, {A,C,B}names the same set as {A,B,C}.

thank you very much for the great effort you exerted with me
 

العلامات المرجعية


ضوابط المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا يمكنك اضافة مرفقات
لا يمكنك تعديل مشاركاتك

BB code متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع


جميع الأوقات بتوقيت GMT +2. الساعة الآن 03:41 AM.