اهلا وسهلا بك فى بوابة الثانوية العامة ... سجل الان

العودة   بوابة الثانوية العامة المصرية > الركن الإجتماعي > اجتماعيات طالب

اجتماعيات طالب منتدى خاص بالطلاب لتبادل المعارف والحلول للمشكلات التعليمية والمسابقات والألغاز الهادفة

إضافة رد
 
أدوات الموضوع انواع عرض الموضوع
  #1  
قديم 09-01-2012, 11:10 AM
الصورة الرمزية zamalek1
zamalek1 zamalek1 غير متواجد حالياً
عضو خبير
 
تاريخ التسجيل: Nov 2010
العمر: 30
المشاركات: 572
معدل تقييم المستوى: 15
zamalek1 is on a distinguished road
Impp هام لرياضة (2) ياريت تنقلوهم فى ورق فلوسكاب



تطابق مثلثات, صفات المثلثات وصفات الاشكال الرباعية

*المثلثات :

(1) منصف زاوية الرأس بمثلث متساوي الساقين ينصف ايضاً القاعدة ويكون عامودي عليها.

(2) بالمثلث – يقابل الاضلاع المتساوية زوايا متساوية , والعكس صحيح .
• اذا كان المثلث هو مثلث متساوي الساقين إذاً الزوايا المجاورة للقاعدة متساويتين.
• (جملة عكسية) : اذا كان بالمثلث زاويتين متساويتين إذاً المثلث هو مثلث متساوي الساقين.

(3) بالدالتون (الدالتون هو مثلث متساوي الساقين مزدوج) , المستقيم الواصل بين زوايا الرأس في المثلثات المتساوية الساقين ينصف زوايا الرأس, وينصف القطر الثاني ويكون عامودي عليه.

(4) الزاوية الخارجية في المثلث اكبر من أي زاوية داخلية ما عدا المجاورة لها. (وتساوي مجموع الزاويتين الداخليتين غير المجاورة لها) .

(5) بالمثلث – يقابل الزاوية الكبيرة في المثلث الضلع الكبير . والعكس صحيح .

(6) مجموع أي ضلعين في المثلث اكبر من الضلع الثالث , والفرق بين أي ضلعين اصغر من الضلع الثالث.

(7) تطابق المثلثات :

(أ‌) يتطابق المثلثين اذا تساويا بضلعين والزاوية المحصورة بينهما (ض,ز,ض) .
(ب‌) يتطابق المثلثين اذا تساويا بضلع والزاويتين المجاورتان له (ز,ض,ز) .
(ت‌) يتطابق المثلثين اذا تساويا بالثلاثة اضلاع (ض,ض,ض).
(ث‌) يتطابق المثلثين اذا تساويا بضلعين والزاوية المقابلة للضلع الكبير من بينهما (ض,ض,ز).

(8) (أ) في المثلث المتساوي الساقين المتوسطان للساقين متساويين. (المتوسط للضلع هو المسنقيم الذي يخرج من احد رؤوس المثلث وينصف الضلع المقابل له ( انصاف الكميات المتساوية متساوية)).
(ب) بالمثلث المتساوي الساقين الارتفاعات على الساقين متساوية.
(ج) منصفات زوايا القاعدة في المثلث المتساوي الساقين متساوية .





** خطوط متوازية :


(9)اذا اعطيا خطين مستقيمان قطعهما مستقيم ثالث ينتج زوج من :
زوايا متناظرة متساوية او زوايا متبادلة متساوية او زوايا على نفس الجهة من القاطع اللتان مجموعهما يساوي 180 .
كان المستقيمان متوازيان.

(10)اذا قطع مستقيم ثالث مستقيمين متوازيين اثنين ينتج :
(أ‌) الزوايا المتناظرة متساوية.
(ب‌) الزوايا المتبادلة متساوية
(ت‌) مجموع الزوايا التي على نفس الجهة من القاطع يساوي 180.

(11) (أ) زوايا التي ساقيهما متوازية بالتلائم هي متساوية ومكملة ل 180 . (أي لدينا زاويتين ساقين هذين الزاويتين متوازيين بالتلائم اذا هاتين الزاويتين متساويتين و مجموعهما يساوي 180)
(ب) زوايا التي ساقيهما معامدة بالتلائم هي متساوية ومكملة لـ 180.
(12) مجموع الزوايا الداخلية للمثلث مساوية لـ 180.

(13) الزاوية الخارجية في المثلث مساوية لمجموع الزاويتين الداخليتين ما عدا الزاوية المجاورة لها.(ملاحظة : كل زاوية خارجية بالمثلث تكمل الزاوية الداخلية الملتصقة بها لـ 180)

(14) مجموع الزوايا الداخلية لمضلع له n اضلاع هو : 180 * (n-2)
ملاحظات :
(أ‌) مجموع كل الزوايا الخارجية بكل مضلع يساوي 180 .
(ب‌) اذا كان المضلع منتظم اذاً كل زواياه متساوية ولذلك كل زواياه تساوي : (180/n) * (n-2)
للتذكير : بالمضلع كا واحدة من الزوايا اصغر من 180 .





أشكال رباعية :




(15) تعريف متوازي الاضلاع :
هو شكل رباعي فيه كل ضلعين من متقابلين متوازيين .

(16) شكل رباعي الذي فيه كل ضلعين متقابلين متساويين هو متوازي اضلاع . (جملة عكسية : بمتوازي الاضلاع كل ضلعين متقابلين متساويين )

(17) شكل رباعي الذي فيه ضلعان متقابلين متوازيان ومتساويان هو متوازي اضلاع .

(18) اقطار متوازي الاضلاع ينصف احدهما الاخر . ( جملة عكسية : في شكل رباعي اقطاره تنصف بعضها البعض اذا هو متوازي اضلاع) .

(19)(أ) اقطار المستطيل متساوية . (والعكس : متوازي اضلاع الذي فيه اقطار متساوية هو مستطيل . )
ملاحظة : ( اذا كانت اقطار شكل رباعي متساوية ومنصفة لبعضها البعض اذا هذا الشكل الرباعي هو مستطيل ).
(ب) اذ بمتوازي الاضلاع احدى الزوايا تساوي لـ 90 درجة اذا متوازي الاضلاع هو مستطيل .

(20) (أ) الاقطار بالمعين تنصف زوايا المعين , (والعكس : متوازي الاضلاع الذي اقطاره منصفة لزواياه هو معين )
(ب) الاقطار بالمعين تعامد بعضها البعض . (والعكس : متوازي اضلاع الذي اقطاره معامدة لبعضها هو معين).

(21) شبه المنحرف المتساوي الساقين اقطاره مساوية لبعضها والزاويتين المجاورتين لكل قاعدة متساويتين .

(22) (أ) بمثلث قائم الزاوية وبه زاوية حادة مساوية لـ 30 درجة العامود القائم المقابل لهذه الزاوية يساوي نصف الوتر .

(ت‌) اذا بمثلث قائم الزاوية احد الاضلاع القوائم يساوي نصف الوتر , اذا اذا الزاوية المقابلة للضلع القائم تساوي 30 درجة .

(23) (أ) بمثلث قائم الزاوية المتوسط للوتر يساوي نصف الوتر.
(ب) اذا بالمثلث المتوسط للضلع يساوي نصفه اذا المثلث هو مثلث قائم الزاوة (جملة عكسية) .

(24) القطع المتوسط بالمثلث ( القطعة التي توصل وسط ضلعين في المثلث ) هو موازي للضلع الثالث ويساوي نصفه .

(25) قطعه التي تنصف ضلع بالمثلث , وتوازي للضلع الثاني – ينصف الضلع الثالث. (جملة عكسية لرقم 24)

(26) (أ) قطع متوسط بشبه المنحرف موازي للقاعدتين ومساوي لنصف لمجموعهما.
(ب) القطعه المنصفه للساق بشبه منحرف وموازية لقاعدتي شبه المنحرف تنصف ايضاً الساق الثاني لشبه المنحرف .

(27) نقاط الالتقاء لاثنين من المتوسطات بالمثلث يقسم كل متوسط لقسمين حيث ان القسم الخارج من زاوية الراس يكون ضعفي القسم الاخر . (اي يقسم كل مستقيم بنسبة 1:2)






القسم الثاني :
الدائرة
الاوتار والزوايا بالدائرة :



(1) (أ) نصف القطر العامودي على الوتر بالدائرة ينصفه .
(ب) جملة عكسية : نصف القطر الذي ينصف الوتر يكون عامودي عليه.

(2) (أ)الاوتار المتساوية بالدائرة تبقى بابعاد متساوية عن مركز الدائرة .
(ب) جملة عكسية : اذا ابعاد الاوتار عن مركز الدائرة متساوية فان الاوتار متساوية.

(3) (أ) اذا تباينت الاوتار في الدائرة تباين ابعادها عن المركز . (بحيث ان اكبرها هو اقربها عن المركز) .
(ب) جملة عكسية : الوتر الاقرب من مركز الدائرة هو الاكبر.

• الزاوية المحيطية : هي الزاوية التي رأسها على المحيط واضلاعها هم اوتار الدائرة .
• الزاوية المركزية : هي زاوية التي رأسها في مركو الدائرة واضلاعها انصاف اقطار في الدائرة .

(4) الزاوية المحيطية في الدائرة تساوي نصف الزاوية المركزية الواقعة على نفس الوتر .

(5) (أ) يقابل الزوايا المركزية المتساوية في الدائرة اوتار متساوية (اقواس متساوية) في نفس الدائرة او في الدوائر المتساوية نفس طول القطر ونصف القطر.
(ب) جملة عكسية : يقابل الاوتار المتساوية زوايا مركزية متساوية .

(6) (أ) يقابل الزوايا المحيطية المتساوية في نفس الدائرة اقواس متساوية و اوتار متساوية .
(ب) جملة عكسية : على اقواس متساوية بالدائرة ينتج زوايا محيطية متساوية .
جملة عكسية : على اوتار متساوية بالدائرة تكون الزوايا المحيطية او الزوايا المركزية مجموعهما 180.


* ( النظريات (5) , (6) تتحقق اذا كانت الزوايا بنفس الدائرة او بدائرتين منفردتين متساويتين (لهما نفس نصف القطر ))


(7) (أ) الزاوية المحيطية الواقعة على القطر تساوي 90 درجة .
(ب) جملة عكسية : الزاوية المحيطية التي تساوي 90 درجة تكون مقابلة للقطر في الدائرة .

(8) قوس الدائرة هي المحل الهندسي للنقطة التي يُرى منها الوتر , التي تكون عليه , بنفس الزاوية .


(9) الزاوية المحصورة بين وترين اللذان يتقاطعان بداخل الدائرة (زاوية داخلية) تساوي نصف مجموع الاقواس المحصورات بين ضلعي الزوايا وامتدادهن.

(10) الزاوية المحصورة بين وترين اللذان امتداددهما يتقاطعان خارج الدائرة (زاوية خارجية) يساوي نصف الفرق بين الاقواس اللمنقسمان من الدائرة بواسطة اضلاع الزوايا .





مــــــــــــــماس الدائـــــــــــــــــرة :


(11)

(أ) المماس للدائرة عامودي على نصف القطر في نقطة التماس .
(ب) جملة عكسية : المستقيم العامودي على نصف القطر في طرفه يكون مماس للدائرة .

(12) المماسان الخارجان من نفس النقطة متساويان .

(13) الزاوية المحصورة بين مماس ووتر مشتركان في نقطة تساوي الزاوية المحيطية الواقعة على نفس الوتر من الجهة الثانية .

مضلعات تحصر دائرة ومضلعات تنحصر في دائرة :

(14) (أ) الشكل الرباعي الذي يحصر دائرة فيه مجموع كل ضلعين متقابلين متساويين .
(ب) جملة عكسية : شكل رباعي الذي فيه مجموع كل ضلعين متقابلين متساويين يمكن ان ينحصر في دائرة .

(15) (أ) في الشكل الرباعي المحصور داخل دائرة مجموع كل زاويتين متقابلتين متساوي ويساوي 180 درجة .
(ب) جملة عكسية : شكل رباعي الذي فيه مجموع كل زاويتين متقابلتين متساوي ويساوي 180 درجة يمكن حصره داخل دائرة .

(16) كل مضلع منتظم يمكن حصره داخل دائرة ويمكن حصر دائرة داخله وللدائرتين نفس المركز .



دائــــــــــــــرتين :



(17) الدائرتين التي تشترك في نقطة واحده تسمى دائرتين متماستين والمستقيم الواصل بين مركزي الدائرتين يسمى بخط المركزين ويمر من نقطة التماس .

(18) خظ المركزين لدائرتين متقاطعتين يكون عامودي على الوتر المشترك وينصفه .




المحلات الهندسية و نقاط خاصة بالمثلث :


(1) العامود المتوسط لقطعة معينة هو المحل الهندسي لجميع النقاط التي تبعد بابعاد متساوية عن اطراف القطعة .

(2) الاعمدة المتوسطة في المثلث تلتقي في نقطة واحدة وهذه النقطة تسمى مركز الدائرة التي تحصر المثلث .

(3) الارتفاعات الثلاثه بالمثلث تلتقي بنقطة واحدة (لكن هذه النقطة غير معرفة بالمثلث )

(4) منصف الزاوية هو المحل الهندسي لجميع النقاط التي تبعد بابعاد متساوية عن ساقي الزاوية .

(5) منصفات الزوايا الثلاثة في المثلث تلتقي في نقطة واحدة وهذه النقطة تسمى مركز الدائرة المحصورة داخل المثلث .

.....................


مكان مركز الدائرة التي تحصر مثلث حسب نوع المثلث :



(نظرية عامة :
نقطة تلاقي الاعمدة المنصفة لاضلاع المثلث تمثل مركز الدائرة التي تحصر المثلث . )

*في مثلث حاد الزاوية الاعمدة المنصفة الثلاثة تلتقي بمركز الدائرة بداخل المثلث .
** في مثلث قائم الزاوية ثلاثة الاعمدة المنصفة تلتقي بمركز الدائرة الموجودة في وسط الوتر (في هذه الحالة ,,,, وتر المثلث = قطر الدائرة ) .
*** في مثلث منفرج الزاوية الاعمدة المنصفة الثلاثة تلتقي بمركز الدائرة الموجوده خارج المثلث .



المساحات :
+ المحيط + تعريفات :



المثلث :مساحة المثلث : ( القاعدة * الارتفاع)/2
او
1/2 * (حاصل ضرب ضلعين من اضلاعه) * (الزاوية المحصورة بينهما )Sin

المحيط : مجموع اضلاعه الثلاثة .

..................

المربع :
هو عبارة عن شكل رباعي جميع زواياه قوائم وكذلك جميع اضلاعه متساوية ,
مساحة المربع : مربع طول ضلعه أي الضلع ضرب نفسه
المحيط : اربعة اضعاف طول ضلعه او مجموع الاضلاع الاربع .
اقطار الربع : متعامدة أي تصنع فيما بينها زاوية قائمة وتنصف بعضها البعض .
نقطة التقاء القطرين في المربع هي عبارة عن مركز الدائرة التي تحصر المربع فعليه تكون انصاف اقطار الربع بمثابة الدائرة المذكورة , اذا جميع الانصاف متساوية .

..........................

شبه المنحرف :
هو عبارة عن شكل رباعي فيه زوج من الاضلاع المتقابلة متوازية .
محيط شبه المنحرف : مجموع اضلاعه الاربعه .
مساحته : (مجموع القاعدتين * الارتفاع ) \2

......................

الدائرة :
هي عبارة عم المحل الهندسي لكافة النقاط التي تبعد بعداً ثابتاً عن نقطة معلومة .
البعد يعبر عن نصف قطرها والنقطة المعلومة هي مركز الدائرة .
الوتر في الدائرة : هي عبارة عن القطعة التي تصل بين نقطتين واقعتين على محيط الدائرة ولا تمر بالمركز .
القطر : القطعة التي تصل بين نقطتين مختلفتين على محيط الدائرة وتمر في مركزها , والقطر يقسم الى قسمين متساويين وكل قسم يرمز له ب r .
الزاوية المحيطية : هي الزاوية التي تقع على محيط الدائرة ومحصورة بين وترين من اوتارها او بين قطر ووتر .

...............

المستطيل :هو عبارة عن شكل رباعي وجميع زواياه قوائم وكل ضلعين متقابلين فيه متساويين ومتوازيين , واقطاره متساوية وتنصف بعضها بعضاً .
المحيط : مجموع اضلاعه.
المساحة : الطول * العرض .

.................
متوازي الاضلاع :هو عبارة عن شكل هندسي رباعي وكل ضلعين فيه متساويين ومتوازيين ايضاً .
مساحته : الطول * الارتفاع .
........................

المعين :هو شكل رباعي جميع اضلاعه متساوية وهو عبارة عن متوبزي اضلاع ولكن اقطاره متعامدة .
مساحته : (حاصل ضرب القطرين ) * 1\2
..............

* كل زاويتين متقابلتين بالراس متساويتان.
** مجموع كل زاويتين متجاورتين واقعتين على خط استقامة واحد يساوي 180 درجة .





التناسب ونظرية طالس :التناسب هو التساوي بين نسبتين او اكثر.



نظرية طاليس :اذا قطع مستقيمان متوازيان ساقي زاوية فانهما يقطعان قطع متناسبة من ساقي الزاوية .
جملة عكسية :
اذا قطع مستقيمين ضلعي زاوية ونتج من التقاطع قطع متناسبة فان المستقيمين متوازيين .

نظرية طالس الموسعة :
المستقيم الذي يوازي احد اضلاع المثلث ينتج مثلثاً اضلاعه متناسبة مع المثلث المعطى .





*****
* منصف الزاوية في المثلث يقسم الضلع المقابل الى قسمين النسبة بينهما تساوي النسبة بين الاضلاع التي تحصر الزاوية والعكس صحيح .




تشابه المثلثات :


يتشابه المثلثات اذا توفر احد البنود :
أ‌) احدى نظريات تطابق المثلثات الاربع.
ب‌) اذا كانت الزوايا متساوية في المثلثين على التناظر .

(المثلثات المتطابقة = المثلثات المتشابهة , المثلثات المتشابهة # المثلثات المتطابقة)
يتشابه المثلثان حسب النظريات التالية :
(1) اذا تساوت زوايا المثلث الاول مع زوايا المثلث الثاني يتشابه المثلثان. (ز,ز,ز)
(2) اذا تناسب ضلعان بالمثلث الاول مع ضلعان بالمثلث الثاني والزوايا المحصورة بين الاضلاع متساوية ينتج ان المثلثين متشابهين . (ض,ز,ض)
(3) مثلثان متشابهين اذا تناسبت الاضلاع المتناظرة (ض,ض,ض)

النتائج التي تنتج من تشابه المثلثات :
(1) النسبة بين الارتفاعات المتناظرة في مثلثين متشابهين تساوي النسبة بين الاضلاع المتناظرة .
(2) النسبة بين منصفات الزوايا المتناظرة في المثلثين المتشابهة النسبة بينهما تساوي النسبة بين الاضلاع المتناظرة .
(3) النسبة بين المتوسطات المتناظرة في مثلثين متشابهين تساوي النسبة بين الاضلاع المتناظرة .
(4) النسبة بين محيطات المثلثات المتشابهة تساوي النسبة بين الاضلاع المتناظرة.
(5) النسبة بين انصاف اقطار الدائرة المحصورة في مثلثات متشابهة تساوي النسبة بين الاضلاع المتناظرة .
(6) النسبة بين انصاف اقطار الدائرة التي تحصر مثلثات متشابهة تساوي النسبة بين الاضلاع المتناظرة.
(7) النسبة بين مساحات المثلثات المتشابهة تساوي لمربع النسبة بين الاضلاع المتناظرة ....

__________________

رد مع اقتباس
  #2  
قديم 09-01-2012, 12:31 PM
الصورة الرمزية shahd.
shahd. shahd. غير متواجد حالياً
مشرفة قسم نباتات الزينة والحدائق المنزلية
 
تاريخ التسجيل: Jul 2011
العمر: 29
المشاركات: 1,231
معدل تقييم المستوى: 15
shahd. will become famous soon enough
افتراضي

يا نهار ابيض كل ده

ربنا معاك
رد مع اقتباس
  #3  
قديم 09-01-2012, 01:49 PM
الصورة الرمزية engi11
engi11 engi11 غير متواجد حالياً
عضو قدوة
 
تاريخ التسجيل: May 2009
المشاركات: 1,254
معدل تقييم المستوى: 17
engi11 has a spectacular aura about
افتراضي

موضوع رائع ومجهود كبير شكرا لك
__________________
رد مع اقتباس
  #4  
قديم 09-01-2012, 03:37 PM
ahmed doula ahmed doula غير متواجد حالياً
موقوف
 
تاريخ التسجيل: Aug 2011
المشاركات: 3,012
معدل تقييم المستوى: 0
ahmed doula is on a distinguished road
افتراضي

يا عم مش مستاهله والله

احنا نحل مسائل على قد مانقدر ونظاكر كويس ونبوس ايدينا وش و ضهر وندعى ربنا متجيش مسئله على الكلام ده
رد مع اقتباس
  #5  
قديم 19-01-2012, 04:07 AM
AHMED 00 AHMED 00 غير متواجد حالياً
عضو نشيط
 
تاريخ التسجيل: Jan 2011
المشاركات: 172
معدل تقييم المستوى: 15
AHMED 00 is on a distinguished road
افتراضي

بصراحة انا شفت الموضوع ده من فترة واستكترته وقولت ملوش لازمة

لكن بعد ما اتزنقت فى مسالة معيييين اضطريت افتحه تانى علشان اراجع الخواص بتاعته وشكلى كدة هنزل الموضوع

تسلم اييييييييييييييييييييدك والف شكر وربنا يبارك فيك ..
رد مع اقتباس
  #6  
قديم 21-01-2012, 05:10 PM
الصورة الرمزية 222ahmed222
222ahmed222 222ahmed222 غير متواجد حالياً
عضو قدوة
 
تاريخ التسجيل: Sep 2011
العمر: 31
المشاركات: 1,954
معدل تقييم المستوى: 15
222ahmed222 will become famous soon enough
افتراضي

بصراحه معلوماتك قيمه جدا بارك الله في دايما تلخيصات الاشياء العامه دي بتكون مفيده جدا بجد ف المسائل وفي بالمناسبة ف علم جديد اسمه الديناتولوجي بيدرس كيفية تلخيص اي علم او ورق لاشياء قليله جدا سهلة المذاكره ودا بصراحه شيء قيم جدا ومفيد جدا
بارك الله فيك
رد مع اقتباس
  #7  
قديم 21-01-2012, 05:42 PM
مروة ابو السعود مروة ابو السعود غير متواجد حالياً
موقوف
 
تاريخ التسجيل: Aug 2010
المشاركات: 305
معدل تقييم المستوى: 0
مروة ابو السعود is on a distinguished road
افتراضي

شكراااااااااا
رد مع اقتباس
  #8  
قديم 10-02-2012, 11:48 PM
SaElDeeb SaElDeeb غير متواجد حالياً
عضو جديد
 
تاريخ التسجيل: Sep 2011
العمر: 30
المشاركات: 32
معدل تقييم المستوى: 0
SaElDeeb is on a distinguished road
افتراضي

اقتباس:
المشاركة الأصلية كتبت بواسطة 222ahmed222 مشاهدة المشاركة
بصراحه معلوماتك قيمه جدا بارك الله في دايما تلخيصات الاشياء العامه دي بتكون مفيده جدا بجد ف المسائل وفي بالمناسبة ف علم جديد اسمه الديناتولوجي بيدرس كيفية تلخيص اي علم او ورق لاشياء قليله جدا سهلة المذاكره ودا بصراحه شيء قيم جدا ومفيد جدا
بارك الله فيك

مش بتاع امين محمود صبرى دا ؟؟ بس ازاى هينفع يتنفذ فى الرياضة؟؟ اصل استحالة هنلخص قوانين :s
رد مع اقتباس
  #9  
قديم 10-02-2012, 11:55 PM
SaElDeeb SaElDeeb غير متواجد حالياً
عضو جديد
 
تاريخ التسجيل: Sep 2011
العمر: 30
المشاركات: 32
معدل تقييم المستوى: 0
SaElDeeb is on a distinguished road
افتراضي

و بجد ألللللللللللللللللف شكر على المجهود الكبير دا يا zamalek1 :D

اصل اهم حاجة التراكمى دا .. بتبقا حاجة مستفزة جدا لما تيجى مسألة صعبة و أحلها و أمشي فيها و بعد كدا أقف على حتة تراكمى صغيرة و مبعرفش الاقى القوانين القديمة فيين

ميرسييييييييي بجد كنت محتاجة للتوبيك دا جداااااا .. كنت محتاسة بجد :D
رد مع اقتباس
  #10  
قديم 11-02-2012, 05:52 AM
الصورة الرمزية Engineer ..
Engineer .. Engineer .. غير متواجد حالياً
Electrical Power Engineering
 
تاريخ التسجيل: Jul 2011
العمر: 31
المشاركات: 1,780
معدل تقييم المستوى: 15
Engineer .. will become famous soon enough
افتراضي

ممتاز والله ربنا يوفقك ويجعله في ميزان حسناتك ودرجاتكـ
__________________
" وإتقوا يوماً ترجعون فيه إلى الله "
الحمد لله على نعمة الإسلام

Engineering is my Life




رد مع اقتباس
  #11  
قديم 12-02-2012, 02:00 AM
tweetyy tweetyy غير متواجد حالياً
عضو ممتاز
 
تاريخ التسجيل: Jul 2011
المشاركات: 254
معدل تقييم المستوى: 14
tweetyy is on a distinguished road
افتراضي

مجهود رائع وعظيم جزاك الله خيرا
وفي صفحه على الفيس بوك للدكتور امين صبرى بخصوص علم الدينتولوجى اماكن دوراته تدريبه وموعدها وفكرة عن العلم واهدافه
وده الرابط : http://www.facebook.com/#!/dr.aminsabry
وعلى فكرة العلم ده بنتشر دلوقتى في كل محافظات مصر
رد مع اقتباس
إضافة رد

العلامات المرجعية


ضوابط المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا يمكنك اضافة مرفقات
لا يمكنك تعديل مشاركاتك

BB code متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع


جميع الأوقات بتوقيت GMT +2. الساعة الآن 02:23 AM.